Acta Cryst. (1988). C44, 110–112

## Structure of Methyl 14 $\beta$ ,15-Cyclo-8 $\beta$ ,16-epoxypimarate\*

By G. Précigoux and F. Leroy

Laboratoire de Cristallographie, UA 144, Université de Bordeaux I, 33405, Talence, France

#### B. ARREGUY-SAN MIGUEL AND M. TARAN

UER de Sciences Pharmaceutiques, Université de Bordeaux II, 33500, Bordeaux, France

### AND B. DELMOND

Laboratoire de Chimie Organique et Organométallique, Institut du Pin, Université de Bordeaux I, 33405, Talence, France

(Received 18 March 1987; accepted 13 August 1987)

Abstract.  $C_{21}H_{32}O_3$ ,  $M_r = 332.5$ , triclinic, P1, a = 6.435 (1), b = 12.749 (5), c = 17.351 (4) Å,  $\alpha = 87.60$  (3),  $\beta = 100.70$  (2),  $\gamma = 92.05$  (3)°, Z = 3, V = 1396.9 Å<sup>3</sup>,  $D_x = 1.19$  g cm<sup>-3</sup>,  $\lambda$ (Mo K $\alpha$ ) = 0.71069 Å,  $\mu = 0.83$  cm<sup>-1</sup>, F(000) = 546, T = 293 K, final R = 0.042 for 2807 observed reflections. The structure was solved by Patterson and Fourier recycling methods. The three conformers observed in the structure are very similar. Each molecule contains three *trans*-fused six-membered rings. Two are in slightly distorted chair conformations, the third is in the boat form. For each molecule, the five-membered ring adopts an envelope conformation.

**Introduction.** The 15,16-epoxide of methyl pimarate (1) on treatment with boron trifluoride-diethyl ether at low temperature (223 K) yielded a mixture of compounds from which an oxygen heterocycle diterpene (2) was obtained (Arreguy-San Miguel, Taran & Delmond, 1987). In order to choose between several structural hypotheses an X-ray analysis was undertaken.



The pentacyclic diterpene observed, having a cyclopropane ring linked to the C nucleus, can be considered as a potential intermediate during the carbocationic rearrangement of pimarane to the strobane skeleton (Herz, Prasad & Mohanraj, 1983).

Experimental. Crystal grown by slow evaporation of an ethanol solution. Colourless crystal of dimensions  $0.1 \times 0.2 \times 0.3$  mm; Mo Ka radiation; graphite monochromator. Lattice parameters from least-squares adjustment to setting angles of 25 reflections with  $11 < 2\theta < 24^{\circ}$ . Correction for Lorentz and polarization effects.  $\omega - 2\theta$  scans,  $\theta_{\text{max}} = 24^{\circ}$ ; range of *hkl*: *h*-7 $\rightarrow$ 7; *k*-14 $\rightarrow$ 14; *l*0 $\rightarrow$ 19. Intensity variation of the three standard reflections < 3%. 4387 unique reflections measured; 2807 with  $I > 3\sigma(I)$ . Solution by Patterson and Fourier recycling methods (Gilmore, 1984), starting from the hypothesis of a molecule with three regular cyclohexane rings. First, such a molecule with a supposed correct orientation was positioned in the cell. Then, after each of the 13 Fourier recycling steps, allowing localization of all the non-H atoms, the only atoms added in the procedure were those corresponding to classical intermolecular van der Waals interactions and able to form correct intramolecular distances. Refinement on F by block-diagonal least squares; anisotropic non-H atoms, isotropic parameters for H atoms (located geometrically or on  $\Delta F$  map for the methyl groups). R = 0.042, wR = 0.048;  $w = 1/\sigma^2(F_o)$  based on counting statistics; S = 0.99;  $\Delta/\sigma_{mean} = 0.1$ . Max. and min. heights in final  $\Delta\rho$  map: +0.2 and -0.1 e Å<sup>-3</sup>. Atomic scattering factors from International Tables for X-ray Crystallography (1974) for non-H atoms and from Stewart, Davidson & Simpson (1965) for H atoms. Local programs CRISAFFI, CRISUTIL; Mini-6 92 Bull computer.

Table 1 lists atomic positional parameters and  $B_{eq}$  values while Table 2 gives interatomic distances and angles.<sup>†</sup>

© 1988 International Union of Crystallography

<sup>\*</sup> Methyl 2a,6,9a-trimethyl-3b,3-epoxymethanoperhydrocyclopropano[*i*]phenanthrene-6-carboxylate.

<sup>&</sup>lt;sup>†</sup> Lists of structure factors, anisotropic thermal parameters and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44321 (32 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

**Discussion.** Fig. 1 shows the molecular structure of the title compound and the atom labelling of molecule (I). The atom labelling of molecules (II) and (III) is

obtained by adding 30 and 60 respectively. The three independent molecules have the same absolute configuration. They are not exactly identical if the

.

| Table 2. Bond distances (Å; $\sigma = 0.006$ Å) and angles |
|------------------------------------------------------------|
| $(^{\circ}; \sigma = 0.3^{\circ})$                         |

|            |            |                                                                                                  |                                                           |                                    |                           |         | -     |       |
|------------|------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------|---------------------------|---------|-------|-------|
|            |            | $B_{\rm eq} = \frac{4}{3} \sum_l \sum_l \sum_l \sum_l \sum_l \sum_l \sum_l \sum_l \sum_l \sum_l$ | $\sum_{j} \beta_{ij} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$ |                                    |                           | (1)     | (11)  | (111) |
|            | x          | у                                                                                                | Z                                                         | Bea                                | C1-C2                     | 1.531   | 1.534 | 1.535 |
| Molecul    | e (1)      |                                                                                                  |                                                           | ~~                                 | C1-C10                    | 1.542   | 1.548 | 1.566 |
| CI         | 230 (10)   | 1918 (5)                                                                                         | 50 (4)                                                    | 4.6 (3)                            | C2-C3                     | 1.524   | 1.521 | 1.548 |
| C2         | -1468 (12) | 1975 (6)                                                                                         | -695 (4)                                                  | 5-9 (3)                            | C4-C5                     | 1.563   | 1.551 | 1.552 |
| C3         | -1360 (11) | 1024 (6)                                                                                         | -1183 (3)                                                 | 5.5 (3)                            | C4-C18                    | 1.524   | 1.553 | 1.493 |
| C4         | - 1036 (9) | -17(3)<br>-31(4)                                                                                 | -740(3)                                                   | 4.0 (3)                            | C4-C19                    | 1.543   | 1.520 | 1.542 |
| C6         | 69 (10)    | -1081(4)                                                                                         | 502 (3)                                                   | 4.5 (3)                            | C5-C6                     | 1.543   | 1.523 | 1.522 |
| C7         | 2060 (9)   | -1138 (4)                                                                                        | 1128 (3)                                                  | 4.0 (2)                            | C5-C10                    | 1.559   | 1.560 | 1.552 |
| C8         | 2252 (8)   | -226 (4)                                                                                         | 1674 (3)                                                  | 3.3 (2)                            | C6C7                      | 1.519   | 1.526 | 1.548 |
| C9         | 2057 (8)   | 835 (4)                                                                                          | 1213 (3)                                                  | 3.2 (2)                            | C8-C9                     | 1.539   | 1.518 | 1.522 |
| C10        | 26 (8)     | 919 (4)                                                                                          | 564 (3)                                                   | 3.5 (2)                            | C8-C14                    | 1.507   | 1.520 | 1.527 |
|            | 2481 (9)   | 1///(4)                                                                                          | 1/62 (4)                                                  | 4.4 (3)                            | C8-028                    | 1.461   | 1.455 | 1.462 |
| C12        | 4399 (8)   | 629 (4)                                                                                          | 2860 (3)                                                  | 3.9(2)                             | C9-C10                    | 1.564   | 1.566 | 1.574 |
| C14        | 4263 (9)   | -224 (4)                                                                                         | 2279 (3)                                                  | 3.7(2)                             | C9C11                     | 1.548   | 1.566 | 1.566 |
| C15        | 3685 (9)   | -477 (5)                                                                                         | 3066 (3)                                                  | 4.3 (3)                            | C10-C20                   | 1.539   | 1.536 | 1.551 |
| C16        | 1361 (10)  | -739 (5)                                                                                         | 2903 (3)                                                  | 4.7 (3)                            | $C_{12} = C_{12}$         | 1.522   | 1.525 | 1.550 |
| C17        | 6582 (10)  | 986 (5)                                                                                          | 3258 (4)                                                  | 5.4 (3)                            | C13-C14                   | 1.505   | 1.512 | 1.493 |
| C18        | -1199 (10) | -898 (5)                                                                                         | -1252(4)                                                  | $5 \cdot 3 (3)$                    | C13-C15                   | 1.516   | 1.508 | 1.536 |
| C 20       | -1949 (9)  | - 181 (0)                                                                                        | -026 (4)                                                  | 4.7 (3)                            | C13-C17                   | 1.509   | 1.519 | 1.488 |
| C21        | 1319 (15)  | -1689(8)                                                                                         | -1862 (6)                                                 | 9.5 (6)                            | C14-C15                   | 1.502   | 1.503 | 1.513 |
| O22        | 754 (8)    | -878 (4)                                                                                         | -1369 (3)                                                 | 7.3 (3)                            | C15C16                    | 1-499   | 1.506 | 1.500 |
| O23        | -2447 (9)  | -1561 (5)                                                                                        | -1527 (4)                                                 | 9.4 (4)                            | C16-C28                   | 1.430   | 1.438 | 1.437 |
| O28        | 553 (6)    | -340 (3)                                                                                         | 2127 (2)                                                  | 4.1 (2)                            | C18-022                   | 1.196   | 1.192 | 1.333 |
| Molecul    | e (II)     |                                                                                                  |                                                           |                                    | C21-022                   | 1.462   | 1.453 | 1.455 |
| C31        | 7555 (11)  | -5884 (5)                                                                                        | 3165 (4)                                                  | 5.3 (3)                            |                           | 112.0   |       |       |
| C32        | 7009 (13)  | -5957 (5)                                                                                        | 3990 (4)                                                  | 6.2 (4)                            | $C_2 = C_1 = C_{10}$      | 113-2   | 114.1 | 112-2 |
| C33        | 7553 (11)  | -4928 (5)                                                                                        | 4403 (4)                                                  | 5.7 (3)                            | $C_{2} = C_{3} = C_{4}$   | 113.3   | 113.1 | 111.4 |
| C34        | 64 / / (9) | - 3971 (5)                                                                                       | 3929 (4)                                                  | 4.5 (3)                            | C3-C4-C5                  | 107-2   | 107.8 | 107-2 |
| C36        | 6297 (9)   | -3933(4)<br>-2980(4)                                                                             | 2594 (3)                                                  | 3.7(2)                             | C3-C4-C18                 | 108 - 1 | 107-3 | 106-8 |
| C37        | 7329 (9)   | -2879 (4)                                                                                        | 1873 (3)                                                  | $4 \cdot 1 (3)$                    | C3-C4-C19                 | 111-2   | 110.7 | 110.0 |
| C38        | 6893 (9)   | -3855 (4)                                                                                        | 1388 (3)                                                  | 3.7 (2)                            | C5-C4-C18                 | 108.3   | 108.0 | 109-1 |
| C39        | 7530 (9)   | -4849 (4)                                                                                        | 1891 (3)                                                  | 3.8 (2)                            | $C_{18} = C_{4} = C_{19}$ | 114.0   | 115.5 | 115-5 |
| C40        | 6478 (9)   | -4981 (4)                                                                                        | 2635 (3)                                                  | 3.9 (2)                            | C4-C5-C6                  | 113.8   | 113.4 | 112.2 |
| C41        | 7359 (10)  | -5844 (5)                                                                                        | 1382 (4)                                                  | 5.1 (3)                            | C4-C5-C10                 | 115.9   | 115-3 | 116-2 |
| C42<br>C43 | 7339 (10)  | -3000(3)<br>-4726(5)                                                                             | 520 (4)<br>150 (4)                                        | $5 \cdot 2 (3)$<br>$4 \cdot 6 (3)$ | C6C5C10                   | 111-1   | 111.9 | 111.5 |
| C44        | 7958 (9)   | -3806(5)                                                                                         | 674 (3)                                                   | 4.3 (3)                            | C5-C6-C7                  | 110-6   | 110.7 | 108-1 |
| C45        | 6251 (11)  | -3694 (5)                                                                                        | -40 (4)                                                   | 5.3 (3)                            | C6C7C8                    | 111.6   | 111-1 | 110-8 |
| C46        | 4228 (11)  | -3552 (6)                                                                                        | 257 (4)                                                   | 5.9 (3)                            | C7-C8-C14                 | 111.3   | 113.0 | 112.1 |
| C47        | 8842 (12)  | -5000 (6)                                                                                        | -384 (4)                                                  | 6.2 (4)                            | C°C8O28                   | 108.3   | 107.8 | 108-4 |
| C48        | 7453 (10)  | -2980 (5)                                                                                        | 4339 (3)                                                  | 4.8 (3)                            | C9-C8-C14                 | 109.7   | 109.9 | 110.3 |
| C 50       | 4099 (10)  | -5238(5)                                                                                         | 2401 (4)                                                  | 5.4 (3)                            | C9-C8-O28                 | 108.9   | 109.7 | 109-9 |
| C51        | 10610 (14) | -1996 (6)                                                                                        | 4803 (5)                                                  | 7.2 (4)                            | C14-C8-O28                | 104.9   | 104.9 | 104.8 |
| O52        | 9540 (7)   | -2890 (4)                                                                                        | 4384 (3)                                                  | 6.1 (2)                            | C8-C9-C10                 | 114.2   | 113-8 | 114.2 |
| O53        | 6482 (9)   | -2336 (4)                                                                                        | 4589 (3)                                                  | 7.8 (3)                            |                           | 112-1   | 111.8 | 111-2 |
| O58        | 4635 (6)   | -3910 (3)                                                                                        | 1066 (2)                                                  | 4.6 (2)                            | C1-C10-C5                 | 106-6   | 106.6 | 107-3 |
| Molecul    | e (111)    |                                                                                                  |                                                           |                                    | C1-C10-C9                 | 108.8   | 108-4 | 107-1 |
| C61        | 3450 (11)  | -7035 (6)                                                                                        | 8018 (4)                                                  | 5.6 (3)                            | C1-C10-C20                | 109-0   | 109-8 | 109-6 |
| C62        | 2678 (13)  | -6170 (7)                                                                                        | 8470 (4)                                                  | 7.1 (4)                            | C5-C10-C9                 | 106.5   | 106.0 | 106-4 |
| C63        | 3083 (12)  | -5071 (6)                                                                                        | 8119(4)                                                   | 6·3 (4)                            | C5-C10-C20                | 115.3   | 115-4 | 116-1 |
| C 65       | 2021 (10)  | -4958 (5)                                                                                        | 6800 (3)                                                  | 3·4 (3)                            | $C_{9} = C_{10} = C_{20}$ | 115.5   | 110-5 | 109-9 |
| C66        | 2074 (11)  | -5765 (5)                                                                                        | 5909 (3)                                                  | 5.0(3)                             | C11-C12-C13               | 111.7   | 111-3 | 113-2 |
| C67        | 3424 (11)  | -6482 (5)                                                                                        | 5520 (3)                                                  | 5.0 (3)                            | C12-C13-C14               | 115-4   | 115.5 | 114.9 |
| C68        | 3220 (9)   | -7625 (5)                                                                                        | 5810 (3)                                                  | 4.2 (3)                            | C12-C13-C15               | 121-1   | 122-8 | 118.3 |
| C69        | 3707 (9)   | -7738 (5)                                                                                        | 6703 (3)                                                  | 4.1 (3)                            | C12-C13-C17               | 115.3   | 114.9 | 115.7 |
| C70        | 2428 (9)   | -6995 (5)                                                                                        | 7129 (3)                                                  | 4.2 (3)                            | C14 -C13 -C15             | 59.6    | 59.7  | 59-8  |
| C72        | 3043 (14)  | -0710(6)                                                                                         | 6363 (5)                                                  | 7.7(4)                             | C14-C13-C17               | 117-1   | 117-2 | 117.9 |
| C73        | 4417 (14)  | -9472 (6)                                                                                        | 5678 (5)                                                  | 7.2(4)                             | C8-C14-C13                | 113-8   | 112.7 | 114.3 |
| C74        | 4632 (10)  | -8333 (5)                                                                                        | 5454 (4)                                                  | 5.2 (3)                            | C8-C14-C15                | 107.9   | 107-4 | 107.5 |
| C75        | 3191 (13)  | -9040 (6)                                                                                        | 4895 (5)                                                  | 7.4 (4)                            | C13-C14-C15               | 60.6    | 60.0  | 61-4  |
| C76        | 988 (14)   | -8652 (8)                                                                                        | 4851 (5)                                                  | 8.6 (5)                            | C13-C15-C14               | 59-8    | 60.3  | 58.8  |
| C78        | 0249 (17)  | -10106 (/)                                                                                       | 2001 (7)<br>6032 (4)                                      | 9·8 (0)                            |                           | 11/-9   | 11/+/ | 119.0 |
| C79        | -408(11)   | -3732 (3)                                                                                        | 7173 (5)                                                  | 5.0 (5)<br>7.5 (4)                 | C15-C16-O28               | 105.5   | 105.9 | 105.0 |
| C80        | 80 (10)    | -7385 (6)                                                                                        | 7023 (4)                                                  | 5.6 (3)                            | C4 - C18 - O22            | 113.5   | 113.3 | 114.5 |
| C81        | 5669 (14)  | -2883 (6)                                                                                        | 6624 (6)                                                  | 8.0 (5)                            | C4-C18-O23                | 125-5   | 124.7 | 125.0 |
| O82        | 4845 (8)   | -3869 (4)                                                                                        | 6918 (3)                                                  | 7.2 (3)                            | O22-C18-O23               | 121.0   | 122-1 | 120-5 |
| 083        | 1668 (9)   | -3181 (5)                                                                                        | 6722 (4)                                                  | 8.7 (3)                            | C18-O22-C21               | 117.1   | 116.7 | 116.9 |
| 088        | 1062 (6)   | -8011 (4)                                                                                        | 5517(2)                                                   | 5.4 (2)                            | C8-028-C16                | 110-1   | 110.7 | 110-9 |



Fig. 1. Molecular structure and numbering of atoms.

orientations of some methyl hydrogens are taken into consideration. They exhibit some rotation of the methyl groups depending on the intermolecular packing environments.

Corresponding bond lengths in the three molecules are comparable. The exception is the C4–C18 bond for molecules (II) and (III) where a difference of 0.040 (6) Å is observed. The largest difference among corresponding valence angles, of the order of 4.5 (3)°, is associated with the C12–C13–C15 angle.

In all the molecules, all the ring junctions are *trans*. Rings A and B are in the chair form, while the C rings are in the boat form (Bucourt, 1974). The  $4\alpha$ methoxycarbonyl group of atoms C18-O22-O23-C21, and the corresponding atoms by adding 30 and 60, are coplanar. The torsion angles of type C3-



Fig. 2. Stereoview showing molecular packing for the title compound.

C18-O23 with values in the range  $122-131^{\circ}$  indicate an anticlinal conformation of these groups with respect to the C4-C5 type bonds.

Fig. 2 shows molecular packing in the unit cell. There are no intermolecular contacts shorter than the sum of the van der Waals radii of corresponding atoms.

#### References

- ARREGUY-SAN MIGUEL, B., TARAN, M. & DELMOND, B. (1987). In preparation.
- BUCOURT, R. (1974). In *Topics in Stereochemistry*, Vol. 8, edited by E. L. ELIEL & N. L. ALLINGER. New York: Interscience/Wiley. GILMORE, C. J. (1984). J. Appl. Cryst. 17, 42–46.
- Herz, W., Prasad, J. S. & Mohanraj, S. (1983). J. Org. Chem.
- 48, 81-90. International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1988). C44, 112-116

# [O-(Dioxa-2,5 hexyl) Oxime]-9 de l'Erythromycine A Hydratée

PAR BERNARD BACHET, CLAUDE BRASSY ET JEAN-PAUL MORNON

Laboratoire de Minéralogie et Cristallographie, associé au CNRS, Université P. et M. Curie, Tour 16, 4 place Jussieu, 75252 Paris CEDEX 05, France

(Reçu le 30 avril 1987, accepté le 13 août 1987)

Abstract.  $C_{41}H_{76}N_2O_{15}H_2O$ , antibiotic CID name roxithromycin, proprietary name Rulid,  $M_r = 854\cdot99$ , orthorhombic,  $P2_12_12_1$ ,  $a = 24\cdot195$  (8),  $b = 16\cdot935$  (6),  $c = 11\cdot686$  (5) Å, V = 4788 Å<sup>3</sup>, Z = 4,  $D_x =$  $1\cdot184$  (1) g cm<sup>-3</sup>,  $\lambda$ (Cu Ka) =  $1\cdot5418$  Å,  $\mu = 6\cdot4$  cm<sup>-1</sup>, T = 293 K, R = 0.047 for 5569 unweighted reflections. The erythronolid ring, cladinose and desosamine have the same conformation in this compound and in erythromycin A. This compound and the enantiomer of anhydroerythromycin A cyclic carbonate N-methyl iodide, (9S)-9,11-dideoxy-9,11-{imino[2-(2-methoxyethoxy)ethylidene]oxy}erythromycin, also have the same conformation for atoms C(1) to C(6), C(10) to O(14) and for the two sugars. The 9-(O-2,5-dioxahexyl) oxime chain is directed towards C(8) and bonded by an intramolecular hydrogen bond to O(6A) and to the water molecule. Some intermolecular hydrogen bonds occur between the molecules themselves and between the molecule and the water. The van der Waals signature displayed on a graphics system shows strong

0108-2701/88/010112-05\$03.00

© 1988 International Union of Crystallography